Continuous weak approximation for stochastic differential equations
نویسندگان
چکیده
منابع مشابه
Adaptive Weak Approximation of Stochastic Differential Equations
Adaptive time-stepping methods based on the Monte Carlo Euler method for weak approximation of Itô stochastic differential equations are developed. The main result is new expansions of the computational error, with computable leading-order term in a posteriori form, based on stochastic flows and discrete dual backward problems. The expansions lead to efficient and accurate computation of error ...
متن کاملstrong approximation for itô stochastic differential equations
in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...
متن کاملConvergence Rates for Adaptive Weak Approximation of Stochastic Differential Equations
Convergence rates of adaptive algorithms for weak approximations of Itô stochastic differential equations are proved for the Monte Carlo Euler method. Two algorithms based either on optimal stochastic time steps or optimal deterministic time steps are studied. The analysis of their computational complexity combines the error expansions with a posteriori leading order term introduced in Szepessy...
متن کاملWeak approximation of stochastic partial differential equations: the nonlinear case
We study the error of the Euler scheme applied to a stochastic partial differential equation. We prove that as it is often the case, the weak order of convergence is twice the strong order. A key ingredient in our proof is Malliavin calculus which enables us to get rid of the irregular terms of the error. We apply our method to the case a semilinear stochastic heat equation driven by a space-ti...
متن کاملA new higher-order weak approximation scheme for stochastic differential equations and the Runge-Kutta method
The authors report on the construction of a new algorithm for the weak approximation of stochastic differential equations. In this algorithm, an ODE-valued random variable whose average approximates the solution of the given stochastic differential equation is constructed by using the notion of free Lie algebras. It is proved that the classical Runge–Kutta method for ODEs is directly applicable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.02.040